
Assistive Application
Programming Guide
For Mac OS X 1.4

For the PFAssistive and PFEventTaps Frameworks
Copyright © 2010-2011 Bill Cheeseman. Used by permission. All rights reserved.

PFiddlesoft, PFiddle Software, pfiddle, pfiddles, and the PFiddlesoft logo
are trademarks of PreForm Assistive Technologies, LLC.

PFiddlesoft™ P.O. Box 326 Quechee, VT 05059-0326

 support@pfiddlesoft.com pfiddlesoft.com

Table of Contents

Introduction to Assistive Application Programming Guide
 1

The PFiddlesoft™ PFAssistive and PFEventTaps Frameworks
 1

Related Documentation
 2

Licensing Terms
 2

Free for Personal Use and for Distribution and Use With Free Products
 3

One-Time Licensing Fee for Distribution and Use With Paid Products
 3

DISCLAIMERS
 3

How to Use the PFAssistive Framework
 5

Discovering UI Elements
 6

1. Reading the Screen
 6

2. Browsing the Accessibility Hierarchy
 8

3. Observing Notifications
 9

Reading a UI Element's Attributes
 11

1. Reading Simple Attributes
 11

2. Reading Unknown Attributes Using Key-Value Coding
 12

3. Reading Parameterized Attributes
 13

4. Navigating the Accessibility Hierarchy
 16

PFiddlesoft™

Assistive Application Programming Guide
 i

Controlling an Application
 17

1. Setting a UI Element's Attributes
 18

2. Performing Actions on a UI Element
 20

3. Sending Keystrokes to an Application
 21

Miscellaneous
 21

How to Use the PFEventTaps Framework
 22

Monitoring Events Using an Event Tap
 23

Filtering, Modifying, Blocking, and Responding to Events
 27

Posting Synthetic Events
 29

Reading the State of an Event Source
 31

How to Enable Access for Assistive Devices
 33

How to Build an Application Using the Frameworks
 35

Building an Application When the Frameworks are Installed as Shared Frameworks
 36

Building an Application to Run As a Trusted Accessibility Process
 37

Building an Application With the Frameworks Embedded in the Application Package
 37

PFiddlesoft™

Assistive Application Programming Guide
 ii

Introduction to
Assistive Application
Programming Guide

This Programming Guide explains how to write an assistive application for Macintosh computer users with disabilities
using the PFiddlesoft PFAssistive and PFEventTaps Frameworks. The PFiddlesoft Frameworks are written in Objective-C
and designed for use with Cocoa applications. They support and enhance Apple’s Accessibility and Quartz Event Taps
APIs, enabling Cocoa developers to use familiar programming techniques to create assistive applications without having
to master the technicalities of Apple’s procedural C Accessibility, Core Foundation, and Core Graphics APIs.

Apple's Accessibility technology grew out of Section 508 of the Workforce Investment Act of 1998 and its requirements
regarding access to electronic and information technology for persons with disabilities. Compliance with Section 508 is a
prerequisite for sale of computer and other products to the federal government and to many state agencies and
educational institutions. The Accessibility API is designed for use both by developers incorporating its features into their
own accessible applications and by developers of assistive devices and applications for users with disabilities. The Event
Taps API is also a Section 508 enabling technology.

Because Accessibility is built into every standard Mac OS X User Interface element, whether written using the Cocoa or
Carbon frameworks, it is capable of much broader uses. Software testing tools, network administration tools,
troubleshooting tools, plug-ins for applications that don't have a plug-in architecture, and remote control applications are
only some of the possibilities.

The PFiddlesoft™ PFAssistive and PFEventTaps Frameworks
The PFAssistive Framework was created in 2003 as the engine driving PFiddlesoft’s highly regarded UI Browser utility for
developers and for users of Apple’s AppleScript GUI Scripting technology. The PFEventTaps Framework was added in
2007 as the engine underlying PFiddlesoft’s Event Taps Testbench utility for developers. Both frameworks have been
revised and updated over a period of years, and they have demonstrated their power and reliability in PFiddlesoft’s
commercial and free developer utilities. PreForm Assistive Technologies, LLC is making the PFiddlesoft Frameworks
available to all Macintosh developers. Together, the PFiddlesoft Frameworks bring to Cocoa developers the full range of
Accessibility capabilities needed to write assistive applications and other software that explores, manipulates, and
monitors the User Interface elements and user inputs of most Mac OS X applications.

The current versions of the PFiddlesoft Frameworks require Mac OS X 10.6 Snow Leopard or newer, and they support all
Accessibility and Event Taps features introduced by Apple through Mac OS X 10.7 Lion. They support clients that run
natively on Intel processors using 32-bit or 64-bit architectures with reference counted memory management. Support
for garbage-collected client applications is not available. They may be installed as shared frameworks in the local /
Library/Frameworks folder or as embedded frameworks in an assistive application’s bundle. Use as a shared framework

PFiddlesoft™

Assistive Application Programming Guide
 1

is preferred, because embedding a framework in an application’s bundle prevents the assistive application from being
treated as a “trusted” application; see How to Enable Access for Assistive Devices for more information.

The two frameworks are independent of one another. Both together enable you to write a full-featured assistive
application, but you may need only one or the other to accomplish more limited purposes.

Download the PFiddlesoft Frameworks at pfiddlesoft.com. PFiddlesoft’s free developer utilities and free 30-day trial
versions of its commercial products are also available for download there.

This version of the Assistive Application Programming Guide is for use with PFAssistive Framework 3.1.3 and
PFEventTaps Framework 1.3.3.

Related Documentation
In addition to this Programming Guide, consult the PFAssistive Framework Reference and the PFEventTaps Framework
Reference for detailed documentation of every public method and property made available in the frameworks. These
References are embedded in the Resources folders of the frameworks, and they are available for download at
pfiddlesoft.com. Sample code in the form of a simple screen reader is provided with the framework.

Apple’s Accessibility API is a set of C header files located in the HIServices subframework of the Mac OS X
ApplicationServices framework, in /System/Library/Frameworks. The API was introduced in Mac OS X 10.2.0 Jaguar and
is installed by default on every Macintosh computer running Mac OS X 10.2 or newer. See Apple's Accessibility
(ApplicationServices/HIServices) Reference and Accessibility Roles and Attributes Reference for documentation of the C
API, and also consult the comments in the header files. Sample code for building an assistive application using the C API
is available in Apple’s UIElementInspector 1.4 sample.

Apple’s documentation for making applications accessible (sometimes called “access enabling” or “accessorizing” an
application) is also useful in understanding how to write assistive applications that take advantage of any application’s
accessibility features. See Apple’s Accessibility Programming Guidelines for Cocoa, NSAccessibility Protocol Reference
and Carbon Accessibility Reference. The legacy document Accessibility Programming Guidelines for Carbon may also be
helpful. Also consult Apple’s Accessibility Overview and its Getting Started with Accessibility document.

Apple’s Event Taps API is a set of C header files located in the CoreGraphics subframework of the Mac OS X
ApplicationServices framework, in /System/Library/Frameworks. The API was introduced in Mac OS X 10.4.0 Tiger and
is installed by default on every Macintosh computer running Mac OS X 10.4 or newer. See Apple's Quartz Event Services
Reference for documentation of the C API, and also consult the comments in the header files.

You will find it easier to follow and understand this Programming Guide and the companion PFAssistive Framework
Reference and PFEventTaps Framework Reference if you download the free 30-day trial version of PFiddlesoft’s UI
Browser application and the free PFiddlesoft Event Taps Testbench utility. These developer utilities demonstrate the
features of Apple’s Accessibility and Quartz Event Taps APIs. Download them, as well as the PFAssistive and
PFEventTaps Frameworks and related documentation, at pfiddlesoft.com.

Licensing Terms1

The PFiddlesoft Frameworks are copyrighted software.

PFiddlesoft™

Assistive Application Programming Guide
 2

1 This is a summary of the PreForm Assistive Technology, LLC licenses. For the legally binding terms consult the licenses
themselves. The licenses are embedded in the frameworks’ bundles, and they are also available for download at
pfiddlesoft.com.

http://pfiddlesoft.com/
http://pfiddlesoft.com/
http://pfiddlesoft.com/
http://pfiddlesoft.com/
http://pfiddlesoft.com/
http://pfiddlesoft.com/
http://pfiddlesoft.com/
http://pfiddlesoft.com/

Free for Personal Use and for Distribution and Use With Free Products
The PFiddlesoft Frameworks may be licensed free of charge for personal use, including use during development of any
client application or other software. They may also be licensed free of charge for distribution and use with any client
application or other software that you distribute to the public free of charge (including freeware as well as free beta or trial
versions of a product for which you intend to request or require payment in the future). You are required only to give
notice to PreForm Assistive Technologies, LLC, to provide attribution to PreForm Assistive Technologies, LLC in your
client application or other software, and to include the copyright notice and license in your client application or other
software.

One-Time Licensing Fee for Distribution and Use With Paid Products
If you distribute the PFiddlesoft Frameworks with or in a client application or other software product for which you
request or require payment, or if you distribute a client application or other software product that includes or uses the
PFiddlesoft Frameworks for which you request or require payment, such as donationware, shareware, and commercial
applications, or for internal use within a for-profit organization, you must within thirty days of initial distribution of your
product pay PreForm Assistive Technologies, LLC a flat one-time license fee of $250 U.S. for each framework that you
distribute or use, regardless of the number of units of your product you distribute or use. This fee covers all present and
future versions of your product, but any separate and distinct product requires you to pay PreForm Assistive
Technologies, LLC an additional licensing fee of $250 U.S. for each framework that you distribute or use, as described
above.

An executed license is required both for free distribution or use, and for distribution or use subject to a flat
one-time license fee with a product for which you request or require payment. Download the PFAssistive
Framework distribution license or the PFEventTaps Framework distribution license or both of them, depending on which
of the PFiddlesoft Frameworks you distribute or use. Then print the licenses in duplicate, fill in the blanks, sign them, and
mail them to:

PreForm Assistive Technologies, LLC
P.O. Box 326
Quechee, VT 05059-0326

DIFFERENT TERMS APPLY TO LARGE OR ESTABLISHED COMMERCIAL SOFTWARE DEVELOPERS. The source code
is available for an additional fee. Contact us at sales@pfiddlesoft.com for details.

 DISCLAIMERS

The PFiddlesoft Frameworks are provided on an "AS IS" basis. The following disclaimers apply to each of the
frameworks:

PREFORM ASSISTIVE TECHNOLOGIES, LLC MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
WITHOUT LIMITATION THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE FRAMEWORK OR ITS USE AND OPERATION
ALONE OR IN COMBINATION WITH OTHER PRODUCTS. THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

 IN NO EVENT SHALL PREFORM ASSISTIVE TECHNOLOGIES, LLC BE LIABLE FOR ANY SPECIAL, INDIRECT,
INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

PFiddlesoft™

Assistive Application Programming Guide
 3

mailto:sales@pfiddlesoft.com
mailto:sales@pfiddlesoft.com

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
ARISING IN ANY WAY OUT OF THE USE, REPRODUCTION, MODIFICATION AND/OR DISTRIBUTION OF THE
FRAMEWORK, HOWEVER CAUSED AND WHETHER UNDER THEORY OF CONTRACT, TORT (INCLUDING
NEGLIGENCE), STRICT LIABILITY OR OTHERWISE, EVEN IF PREFORM ASSISTIVE TECHNOLOGIES, LLC
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. YOUR REMEDY FOR ANY DEFECT OR FAULT
IN THE FRAMEWORK IS LIMITED TO REFUND OF THE LICENSE FEE YOU PAID.

PFiddlesoft™

Assistive Application Programming Guide
 4

How to Use the
PFAssistive Framework

Apple's Accessibility API implements the concept of a UI element, an object that represents a user interface element on
the screen in any running application, such as a menu, a window, or a button, or the application itself. The Accessibility
API also implements the concept of an observer, an object that registers to observe a UI element that issues Accessibility
notifications when changes occur.

The PFAssistive Framework implements these same concepts in its PFUIElement, PFApplicationUIElement, and
PFObserver classes, each of which instantiates and encapsulates an associated Accessibility API object and makes its
capabilities available to an assistive application using standard Objective-C and Cocoa techniques. For example, an
assistive application using the PFAssistive Framework can implement optional delegate methods declared in the
framework’s PFUIElementDelegate and PFObserverDelegate formal protocols to respond to Accessibility notifications.

In this chapter, you learn how to discover UI elements, how to read UI element attributes, and how to control UI elements
and, through them, the target application, all in the interest of supporting assistive applications that enable a user with
disabilities to use the computer to perform the same tasks that any user can perform with the graphical user interface. An
assistive application typically does this by performing these tasks:

• An assistive application discovers individual UI elements in the target application in one of three ways: by locating
an element on the screen, for example, the element currently under the mouse or the element that is the target
application’s frontmost window; by receiving a notification from an element that something about it has just
changed; or by navigating the element hierarchy from a known starting point. Read the Discovering UI Elements
section for details.

• When an assistive application discovers a UI element of potential interest, it ascertains the element’s identity and
nature by reading its attributes, such as its role, its title, and its position and size on the screen. Read the Reading
a UI Element’s Attributes section for details.

• Once it identifies and understands a UI element, an assistive application manipulates or controls the element and,
through it, the target application, at the user's direction. There are three ways to do this, depending on the nature
of the element: by setting the element's value or other attribute; by performing an action on the element; or by
sending a keystroke to the target application while the element has keyboard focus (or by sending a key
combination that the application recognizes as a keyboard shortcut). Read the Controlling an Application section
for details.

By performing these tasks—discovering, reading, and controlling a UI element—an assistive application enables a user
with disabilities to do everything that a user without disabilities can do with the target application. This parity of treatment
defines and delimits the Accessibility API. Apple rigorously enforces the notion that the Accessibility API should enable a
user with disabilities to do everything that any user can do with a target application, and no more. What the API cannot

PFiddlesoft™

Assistive Application Programming Guide
 5

do is as important as what it can do. For example, the Accessibility API cannot read or control UI elements in a window
that is offscreen, even if the window still exists in memory and the Cocoa frameworks can see it.

This design principle explains a key feature of the Accessibility API, namely, the hierarchy of UI elements that an assistive
application navigates to find any element's parent and children. In principle, the Accessibility hierarchy includes only
those elements that a user can read and control in the graphical user interface of the target application. Although the
Cocoa view hierarchy includes many invisible views that contain other views for purposes of programmatic control, the
Accessibility hierarchy ignores them because they play no direct role in a user's work with the target application.

In the first section of this chapter, you learn how to discover a UI element, including the application UI element and the
special system-wide UI element. This involves using the PFUIElement class and its PFApplicationUIElement subclass to
read the screen or to browse an application's Accessibility hierarchy, or using the PFObserver class to register for and
observe notifications from an application or its individual UI elements. In the second section, you learn how to read a UI
element's attributes. In the last section, you learn how to control an application by setting those attributes of its UI
element that are settable, by performing actions that are recognized by some of its UI elements, and by sending
keystrokes to it.

Discovering UI Elements
There are three primary ways in which an assistive application discovers UI elements:

1. A screen reader is the most common kind of assistive application. It ascertains the identify of the UI element
currently under the mouse or at a specified position on the screen, either in the active application or in an
application that is running but is not currently the frontmost application. Examples are Apple's VoiceOver
application, its Accessibility Inspector, and the Screen Reader in PFiddlesoft's UI Browser. Read the Reading
the Screen subsection for details.

2. A browser is another kind of assistive application. The user specifies a target application and then navigates
that application's Accessibility hierarchy until it finds a UI element of interest. Examples are Apple's System
Events application, which supports GUI Scripting for AppleScript using the Accessibility API, and the main
browser view in UI Browser. Read the Browsing the Accessibility Hierarchy subsection for details.

3. An observer is a third kind of assistive application. It registers to monitor specified kinds of activity in a target
application or a particular UI element, and it responds when it receives a notification of interest. UI Browser is an
example. Read the Observing Notifications subsection for details.

Some assistive applications, such as UI Browser, implement all three modes of operation.

1. Reading the Screen
A screen reader discovers UI elements by determining what UI element is located at a specified point on the screen or
screens attached to the computer, typically the point where the mouse pointer is located. To implement this feature in
your assistive application, use the +elementAtPoint:withDelegate:error: class method of the PFUIElement
class or the -elementAtPoint: method of the PFApplicationUIElement class, both declared in PFUIElement.h.

Use the PFUIElement class method when an assistive application needs to know what UI element is visible at the
specified location without regard to which running application owns it. Use the PFApplicationUIElement instance method
when it needs to know what UI element belonging to a specific application is at the specified location, even if the element
is currently obscured by a UI element belonging to another application.

PFiddlesoft™

Assistive Application Programming Guide
 6

Both of these methods take an NSPoint structure specifying a point on the screen as an argument. The Accessibility API
uses the Quartz 2D device space coordinate system in which the origin is at the top-left corner of the primary screen, the
screen on which the menu bar appears.2 Positive movement flows down and to the right; negative movement, up and to
the left. From the Cocoa perspective, device space is flipped.

A screen reader typically focuses on the current mouse pointer. In Cocoa, the location of the mouse pointer can be
obtained at any time in bottom-left relative screen coordinates, regardless of the current event or pending events, using
NSEvent's +mouseLocation class method. You must convert it to the Accessibility API's top-left relative screen
coordinates before passing it to either of these methods. To avoid having to convert the coordinates, use Carbon's
HIGetMousePosition() function, which returns top-left relative screen coordinates; it is available in 64-bit
applications as well as 32-bit applications.

An assistive application may need to read the screen continuously as the user moves the mouse, or it may only need to
read the screen at user direction, for example, in response to a keyboard shortcut, a global hot key, or an AppleScript
command. To read the screen continuously, an application would typically use a repeating timer with a resolution that is
tight enough to capture everything the mouse moves over, perhaps 2 or 3 times per second. To read the screen at user
direction, simply call +elementAtPoint:withDelegate:error: or
-elementAtPoint: in an action method or other method that is called on command.

Here is a simplified version of the -updateScreenReader method in UI Browser’s screen reader window controller:

- (void)updateScreenReader {

! HIPoint location;

! HIGetMousePosition(kHICoordSpaceScreenPixel, NULL, &location);

! NSPoint point = NSMakePoint(location.x, location.y);

! PFUIElement *element =

! ! [PFUIElement elementAtPoint:point withDelegate:nil error:NULL]];

! // ...

}

UI Browser’s -updateScreenReader method is called from a repeating timer, which is set up in the window
controller’s -awakeFromNib method like this:

[NSTimer scheduledTimerWithTimeInterval:0.4 target:self

! selector:@selector(updateScreenReader) userInfo:nil repeats:YES];

The +elementAtPoint:delegate:error: method takes two other arguments, delegate and error. They may
be nil or NULL, respectively, as shown here. Pass an object in the delegate argument and implement either or both
of the PFUIElementDelegate formal protocol methods -PFUIElementWasDestroyed: and
–PFUIElementReportError: if you wish to take advantage of those capabilities. The error argument is an indirect
reference to a standard NSError object. See the PFUIElement Class Reference for more information.

PFiddlesoft™

Assistive Application Programming Guide
 7

2 The primary screen may differ from the screen returned by NSScreen’s -mainScreen method, which returns the
screen with the active window.

Both +elementAtPoint:withDelegate:error: and -elementAtPoint: create and return an autoreleased
PFUIElement object representing the UI element at the specified location. An assistive application can read its attributes,
navigate the Accessibility hierarchy from it using its parent and children attributes, register to observe changes to it, and
control it using the other features of the PFAssistive Framework.

2. Browsing the Accessibility Hierarchy
A browser discovers UI elements by navigating the Accessibility hierarchy from a known starting point, typically the root
application element of a specified application or the system-wide element that is aware of the frontmost running
application. To do this in your assistive application, start by creating an application or system-wide UI element using one
of the initializers declared in the PFApplicationUIElement class, such as -initWithPath:delegate:,
-initWithPid:delegate:, and -initSystemWideWithDelegate:, in PFUIElement.h.

The easiest way to create an application UI element is to use the path or file URL identifying the application package or
file, or the application package’s bundle identifier. To access TextEdit, for example, you could use any available Cocoa
technique to get the path to TextEdit’s application file, such as spelling it out like this:

NSString *appPath = @"/Applications/TextEdit.app";

Then create and initialize the application UI element like this:

PFApplicationUIElement *appElement =

 [[PFApplicationUIElement alloc] initWithPath:appPath delegate:nil];

The designated initializer for the PFApplicationUIElement class is -initWithPid:delegate:. Use the designated
initializer when an application has easy access to the BSD Unix process identifier number (PID) of the target application.
Every PFUIElement object makes its application PID available in its -pid method, so the application can use the
designated initializer to create a PFApplicationUIElement object for the target application whenever a PFUIElement object
is available, for example, after reading the screen. Convenience initializers taking the application’s full path, URL or bundle
identifier are also provided. Alternatively, simply call the PFUIElement object’s -applicationElement method.

The Accessibility API recognizes a special UI element known as the system-wide element. Use it when an application
needs to get a PFApplicationUIElement object representing the application that is currently active, using PFUIElement’s
AXFocusedApplication property.

The delegate argument to the three PFApplicationUIElement initializers plays the same role that it plays in
+elementAtPoint:withDelegate:error:, discussed above. Set it to nil if the PFUIElement delegate methods
are not needed.

The first two initializers create and return an autoreleased PFApplicationUIElement object representing a running
application. The third creates and returns an autoreleased PFApplicationUIElement object representing the system, from
which the active or frontmost running application can be determined by reading its AXFocusedApplication attribute.
An assistive application can read a target application element’s attributes, register to observe changes to it, and control it
using the other features of the PFAssistive Framework. Most importantly for purposes of browsing, it can navigate the
Accessibility hierarchy by using the AXParent and AXChildren attributes to get every element in the hierarchy. The
root application UI element’s AXChildren property is the starting point. For more about reading Accessibility attributes

PFiddlesoft™

Assistive Application Programming Guide
 8

to navigate the hierarchy using PFUIElement properties, consult the Navigating the Accessibility Hierarchy subsection of
the Reading a UI Element’s Attributes section.

3. Observing Notifications
An observer discovers UI elements by registering to be notified when a target application’s UI elements are changed by
user activity or by other means such as an AppleScript script or another assistive application. When the user of a target
application types into a text field, adjusts a slider, moves or resizes a window, or selects a menu item, for example, an
observer that has registered to observe such activity receives a notification. The notification includes a reference to the
affected UI element, and the observer can then use it to respond.

To observe Accessibility notifications in your assistive application, create a PFObserver object using one of the factory
convenience methods declared in PFObserver.h, or create a PFObserver object and initialize it with one of the declared
initializers. Once a PFObserver has been created, register it to observe a particular notification using the
-registerForNotification:fromElement:contextInfo: method.3

A PFObserver has a choice of two techniques to watch for and respond to Accessibility notifications: a delegate method
and a callback method. The delegate method is easier to use because it provides full observer management, and it
suffices for most purposes. The callback method allows for more complex behavior when circumstances require it, but
the assistive application must take responsibility for managing the observer. The choice is made when the PFObserver is
created.

To create a PFObserver that uses a delegate method, call a factory method, such as +observerWithPath:, passing
in the full path of the target application. Then, when the assistive application is ready to begin observing the target
application, take two additional steps: set the delegate, and register to observe a specified notification from a specified UI
element. The delegate must declare that it conforms to the PFObserverDelegate formal protocol, which is declared in
PFObserver.h. Set the delegate by sending PFObserver’s -setDelegate: message.

To create a PFObserver that uses a callback method instead of a delegate method, call the corresponding
+observerWithPath:notificationDelegate:callback: factory method, passing in the full path of the target
application. Also pass in an object to serve as the notification delegate and the selector for the callback method that the
notification delegate implements.

As an alternative to using the target application’s full path, call factory methods that use the target application’s file URL,
bundle identifier, or BSD Unix process identification number (PID) to create a PFObserver.

All of the factory methods have corresponding initializers for use when factory methods are inappropriate. The designated
initializers are -initWithPid: and -initWithPid:notificationDelegate:callbackSelector:.

Registration using the -registerForNotification:fromElement:contextInfo: method requires two
arguments, notification, a string identifying a valid Accessibility API notification, and element, the PFUIElement
that is to be observed. As a convenience when the application as a whole is to be observed instead of one of its UI
elements, pass nil as the element argument; the framework creates a temporary application element using the
observer’s UNIX process identifier and saves you the trouble of creating on yourself. The contextInfo argument is

PFiddlesoft™

Assistive Application Programming Guide
 9

3 When using the PFAssistive Framework under Mac OS X 10.5 Leopard and earlier, registering for either the AXApplica-
tionActivated or AXApplicationDeactivated notification also registered for the other. The same was true of the AXApplica-
tionHidden and AXApplicationShown notifications. The framework did this in order to work around a longstanding Acces-
sibility API bug that Apple fixed in Mac OS X 10.6 Snow Leopard.

optional; it is provided in case an assistive application needs to pass information to the observer for use when a
notification is received. The element to be observed can be a PFApplicationUIElement. This is often desirable, because
an observed application element issues notifications whenever the specified notification is issued by any UI element in the
target application. For example, if the target application is observed for kAXWindowMovedNotification, it issues a
notification when any window in the application is moved, and the notification identifies the affected window. If a specific
window is observed, it issues a notification only when that window is moved. In that case, the observed element and the
affected element are one and the same element.

One PFObserver can be registered to observe many notifications, or an assistive application can create multiple
PFObservers and register each of them to observe different notifications. For example, UI Browser creates a single
PFObserver object and registers it to observe many notifications selected by the user from a table in UI Browser’s
Notifications drawer. It uses a callback method to respond to notifications. This code, from the repeat block governing a
single row in the table, calls a number of internal UI Browser methods that are not explained here, but the pattern should
be clear:

// Lazily create observer if not yet created.

if (![self notificationObserver]) {

! [self setNotificationObserver:

! ! [PFObserver observerWithPid:[[self currentElement] pid]

! ! notificationDelegate:self callbackSelector:

! ! @selector(observer:notification:element:contextInfo:)]];

}

// Register observer for notifications and element.

NSIndexSet *indexSet = [table selectedRowIndexes];

NSUInteger indexBuffer[[indexSet count]];

NSUInteger idx;

for (idx = 0; idx < [indexSet getIndexes:indexBuffer

! maxCount:[indexSet count] inIndexRange:NULL]; idx++) {

! [[self notificationObserver] registerForNotification:

! ! [(NSDictionary *)[combinedNotifications objectAtIndex:indexBuffer[idx]]

! ! objectForKey:@"notification"] fromElement:[self currentElement]

! ! contextInfo:(void *)[[self currentElement] elementInfo]];

}

The payoff comes when notifications are issued in response to user-initiated changes in the target application’s graphical
user interface. In the case of a delegate-based observer, the delegate method declared in the PFObserverDelegate
protocol, -applicationWithIdentifier:atPath:didPostAccessibilityNotification:
fromObservedUIElement:forAffectedUIElement:, is called. In the case of a callback-based observer, the
callback method declared in the notification delegate is called. It must have this signature:

- (void)observer:(PFObserver *)observer notification:(NSString *)notification

! element:(PFUIElement *)element contextInfo:(void *)contextInfo

PFiddlesoft™

Assistive Application Programming Guide
 10

The delegate method is provided with several useful items of information: the bundle identifier and path of the target
application, the notification string, the observed PFUIElement and the affected PFUIElement. The callback method is
provided with somewhat different information, but all needed items can be determined from the PFObserver object that is
passed in. The key item in both cases is the affected UI element. An assistive application can read its attributes, navigate
the Accessibility hierarchy from it using its parent and children attributes, register to observe other changes to it, and
control it using the other features of the PFAssistive Framework.

In addition to PFObserver delegate and callback methods, an assistive application can implement optional delegate
methods declared in the PFUIElement class or register to receive corresponding notifications whenever a UI element is
destroyed in the user interface, or to learn of Accessibility errors. See the UIElementDelegate formal protocol declared in
PFUIElement.h.

Reading a UI Element's Attributes
Some assistive applications are passive. They discover the target application’s UI elements and read the values of their
attributes, but they do not enable the user to control the target application. Even active assistive applications typically
must read the attributes of the target application’s elements.

There are four important kinds of operations involved in reading attributes of a UI element:

1. Reading any of dozens of simple attributes by name to obtain information about the current state of a UI
element. Read the Reading Simple Attributes subsection for details.

2. Reading any of the simple attributes by using Key-Value Coding (KVC) when their names are not known until
runtime. This operation is very powerful, because in many situations an assistive application can get a list of
relevant attribute names and iterate over them to get their values. In addition, this operation allows an assistive
application to read new attributes introduced in future versions of Mac OS X and custom attributes used by
third-party applications. Read the Reading Unknown Attributes Using Key-Value Coding subsection for details.

3. Reading several so-called parameterized attributes to obtain the value of some part of a complex UI element
given a variable parameter such as the position of the mouse on the screen. For example, an assistive
application can get a character or line of text under the mouse in a text area or a cell at the intersection of a
given column and row in a cell-based table. Read the Reading Parameterized Attributes subsection for details.

4. Reading the AXParent and AXChildren attributes of any UI element to navigate the accessibility hierarchy. Read
the Navigating the Accessibility Hierarchy subsection for details.

1. Reading Simple Attributes
An assistive application normally reads the values of a UI element’s Accessibility attributes using the properties declared
in the Attributes category on the PFUIElement class. The Attributes category declares several dozen properties, each
corresponding to an Accessibility API attribute. The value of an Attributes property is always a Cocoa object. Each
Attributes property is named for the NSString used to identify the attribute in the Accessibility API, such as AXRole for
the attribute named “AXRole” and AXTitle for the attribute named “AXTitle.”

Depending on the attribute, the value of an Attributes property of the receiving UI element may be another PFUIElement
object or an NSString, NSNumber, NSValue, or other object. For example, the value of the AXParent property is a
PFUIElement object representing the receiving PFUIElement’s parent element in the Accessibility hierarchy. Some
properties return an NSArray object containing multiple PFUIElements, NSStrings, or other objects. For example, the
AXChildren property returns an array of PFUIElement objects representing the receiving PFUIElement’s children

PFiddlesoft™

Assistive Application Programming Guide
 11

elements in the hierarchy. For NSNumber and NSValue attribute values, an assistive application must use standard
Cocoa methods to extract the value, such as -boolValue, -intValue, -pointValue, and -rangeValue. For
example, the AXSize property returns an NSValue object representing the height and width of the receiving
PFUIElement on the screen; use NSValue’s -sizeValue method to extract its NSSize structure. Consult the PFAssistive
Framework Reference for information about each property, including its type, the type of its contents if it is an NSArray,
and the method to use to extract its value if it is an NSNumber or NSValue.

The PFUIElement class includes several utility methods that help an assistive application to read UI element attributes.
The -exists method returns YES if the receiving UI element still exists in the target application’s graphical user
interface; for example, if a window has not been closed by the user. It is prudent to test whether an element still exists
before using it, because objects representing destroyed elements may be nil or may have been recycled to refer to
other elements, leading to unexpected behavior. The -existsAttribute: method returns YES if the receiving
element exists and the name of the attribute passed in the attribute argument identifies an attribute that is supported
by the receiving PFUIElement. The -existsValueForAttribute: method returns YES if the receiving element exits,
it supports the attribute, and the attribute returns a value. This is important because Cocoa applications often indicate
that they support an attribute but do not in fact return a value for it. The -typeForAttribute: method returns an
NSString identifying the type of an attribute’s value, such as “array,” “Boolean,” “range,” “rect,” or “UIElement,” suitable
for use as the identifier of a table column, for determining which NSNumber or NSValue method to use to extract a
structure, and in other situations where an attribute’s value must be processed differently depending on its type.

This example from UI Browser reports either the plain English description or the technical name (beginning with “AX”) of
each attribute listed in UI Browser’s Attributes drawer, depending on a user preference setting.

NSString *description;

if ([[NSUserDefaults standardUserDefaults]

! integerForKey:TERMINOLOGY_STYLE_DEFAULTS_KEY] == 0) {

! description = [element AXRoleDescription];

} else {

! description = [element AXRole];

}

Many methods in the PFUIElement class return PFUIElement or PFApplicationUIElement objects. Think of these methods
as factories that can be called upon to churn out these objects as often as needed, whenever needed, even if they are
used only for a moment. In addition, an assistive application can create a temporary PFUIElement object at any time, for
example, an object representing a known UI element in order to test it for equality with a cached element. The application
can allocate as many UI elements as desired in this way, as often as desired, and initialize each of them with
-initWithElementRef:delegate:. Typically, in this situation, it gets the CGElementRef argument from an existing
or newly-created element by sending it an -elementRef message. Separate PFUIElement or PFApplicationUIElement
objects representing the same UI element in the running application are interchangeable. Whether they represent the
same element can be tested using -isEqual: or -isEqualToElement:.

2. Reading Unknown Attributes Using Key-Value Coding
There are many circumstances in which an assistive application does not know the names of the attributes it will read
until it is running. This frequently happens, for example, when reading all of the attributes of a UI element currently under

PFiddlesoft™

Assistive Application Programming Guide
 12

the mouse and calling PFUIElement’s -attributes method to get an array of the element’s attribute names. It may
also happen when targeting an application that implements custom UI elements with custom attributes.

The PFAssistive Framework includes two methods based on Key-Value Coding (KVC) for these situations,
-valueForAttribute: and -valuesForAttributes:. They take advantage of the fact that the name of every
simple Attributes property is the same as the NSString used in the Accessibility API to identify it. The
-valueForAttribute: method takes as its argument an NSString containing the name of an attribute, and the
-valuesForAttributes: method takes an array of NSStrings containing the names of several attributes. The
attributes passed to these two methods, for example, the attributes returned by the -attributes method, may be
unknown to your assistive application or to the Accessibility API. Nevertheless, these KVC-based methods return their
values. Use the -exists, -existsAttribute:, -existsValueForAttribute:, and -typeForAttribute:
methods to help understand and process the values they return.

An assistive application based on the PFAssistive Framework continues to work even under new versions of Mac OS X
that introduce new attributes and with new target applications that use custom UI elements with custom attributes.

This example from UI Browser is the action method for the Find in Browser button in UI Browser’s Attributes drawer:

- (IBAction)elementFindButtonAction:(id)sender {

! if ([self isTargetAccessible]) {

! ! if ([[self currentElement] exists]) {

! ! ! NSTableView *table = [self attributeTable];

! ! ! NSString *selectedAttribute = [(NSDictionary *)[[self cachedAttributeArray]

! ! ! ! objectAtIndex:[table selectedRow]] objectForKey:@"attribute"];

! ! ! PFUIElement *selectedElement = [[self currentElement]

! ! ! ! valueForAttribute:selectedAttribute];

! ! ! [self displayElementInCurrentApplication:selectedElement];

! ! } else {

! ! ! NSBeep();

! ! }

! }

}

3. Reading Parameterized Attributes
The Accessibility API recognizes several attributes of a special kind known as parameterized attributes. These are
attributes that have a different value depending on the value of an argument passed to them. For example,
parameterized attributes recognized by a text area UI element return the character located at a given point in the
element’s coordinate system, the NSString constituting a line of text in the view given the line number, and the bounds of
a text passage in the view given the range of characters. Similarly, a parameterized attribute recognized by a cell-based
table in Apple’s Numbers application returns the cell located at a given row and column intersection, and parameterized
attributes recognized by a layout area in Numbers convert between locations in screen coordinates and locations in
scaled layout area coordinates.

The Attributes category of the PFUIElement class declares methods for all of these parameterized attributes, such as
-AXLineForIndex:, -AXCellForColumnAndRow:, and -AXLayoutPointForScreenPoint:. An assistive

PFiddlesoft™

Assistive Application Programming Guide
 13

application can use them in a variety of ways. For example, a screen reader can get the location of the mouse pointer on
the screen, and then use the -AXRangeForPosition: parameterized attribute method to obtain the range of the
Unicode glyph at that location. The location field of the NSRange structure returned by sending the -rangeValue
message to the returned NSValue object is the index of the first character in the glyph in the Cocoa text storage object
under the mouse, and the length field is the distance to the character at the beginning of the next glyph, bearing in mind
that Unicode glyphs may be composed of several Unicode characters. These values apply even if the text storage object
spans several text containers such as multiple columns or pages. An assistive application uses the character’s range as a
springboard into the other parameterized attribute properties, such as -AXLineForIndex:, -AXRangeForLine:,
and -AXAttributedStringForRange:.

To help an assistive application distinguish between simple and parameterized attributes, the PFUIElement class
supplements its -attributes method with two similar methods that return lists of attributes,
-nonParameterizedAttributes and -parameterizedAttributes. In addition, the kind of a particular attribute
can be determined with the -isParameterizedAttribute: method.

The example from UI Browser on the next page gets several parameterized values in three steps:

PFiddlesoft™

Assistive Application Programming Guide
 14

- (void)recordParametersForParameterizedElement:(PFUIElement *)element

! atLocation:(NSPoint)location {

 // Get the string, range and bounds of the line of text under the mouse.

 NSValue *mousePosition = [NSValue valueWithPoint:location];

 // Get the primary parameterized value: (1) Get the index of the first character

composing the glyph under the mouse.

 if ([element isRole:NSAccessibilityTextAreaRole]

! ! || [element isRole:NSAccessibilityTextFieldRole]) {

! ! NSValue *characterRangeForPosition =

! ! ! [element AXRangeForPosition:mousePosition];

! ! NSNumber *characterIndex =

! ! ! [NSNumber numberWithInt:[characterRangeForPosition rangeValue].location];

 // Get the secondary parameterized values: (2) use the character index to get

the range of characters composing the glyph under the mouse (this should be the same

as characterRangeForPosition); (3) use the character index to obtain the line index of

the line under the mouse; (4) use the line index to obtain the range of characters

composing the line under the mouse; and (5) use the character index to obtain the

range of characters composing the style run under the mouse.

! ! NSValue *characterRangeForGlyph = [element AXRangeForIndex:characterIndex];

! ! NSNumber *lineIndex = [element AXLineForIndex:characterIndex];

! ! NSValue *characterRangeForLine = [element AXRangeForLine:lineIndex];

! ! NSValue *characterRangeForStyleRun =

! ! ! [element AXStyleRangeForIndex:characterIndex];

 // Get the tertiary parameterized values: (6) Get the string for the line; (7)

Get the RTF data for the line; (8) Get the bounds of the line. UI Browser's use of the

line located under the mouse as the base for calculating tertiary values is arbitrary;

any other range could have been used as the base (such as characterRangeForStyleRun or

characterRangeForGlyph).

! ! NSString *stringForLine = [element AXStringForRange:characterRangeForLine];

! ! NSData *RTFDataForLine = [element AXRTFForRange:characterRangeForLine];

! ! NSAttributedString *attributedStringForLine =

! ! ! [element AXAttributedStringForRange:characterRangeForLine];

! ! NSValue *boundsForLine = [element AXBoundsForRange:characterRangeForLine];

! ! // Store all parameter values in a dictionary.

! ! //

}

PFiddlesoft™

Assistive Application Programming Guide
 15

4. Navigating the Accessibility Hierarchy
Many Accessibility attributes return UI elements. These attributes are yet another way in which an assistive application
can discover UI elements in a target application, in addition to the three described in the Discovering UI Elements
section. For example, the AXCloseButton property returns the PFUIElement object representing the close button in the
title bar of the receiving window UI element, and the AXSelectedRows property returns an array of PFUIElement
objects representing the rows in a table or outline.

An assistive application navigates or browses the target application’s Accessibility hierarchy by using certain of these
attributes after discovering the starting point by reading the screen, getting the application element, or receiving a
notification. Specifically, the AXParent property enables an assistive application to navigate “up” the several levels of the
hierarchy toward the root application element at the top, and the AXChildren property enables it to navigate “down”
the hierarchy toward a leaf element visible on the screen. The root application element has no parent (its AXParent
property is nil), and a leaf element has no children (its AXChildren property is an empty array).

There are several Accessibility attributes that allow an assistive application to skip levels when navigating to an important
container in the target application’s Accessibility hierarchy, such as the window, drawer, or sheet containing the UI
element under the mouse. The AXWindow property returns the PFUIElement representing the receiving PFUIElement’s
containing window, ignoring any subcontainer levels that might lie between the window and the leaf element under the
mouse. The AXTopLevelUIElement property is similar, but the PFUIElement it returns can represent something other
than a window, such as a drawer or a sheet. The top-level container of an application dock item is the Dock application’s
list of dock items. To ascertain what kind of UI element the container is, get its AXRole property. To determine whether it
is a given kind of UI element, use PFUIElement’s -isRole: method.

The example on the next page is part of UI Browser’s screen reader window controller’s code to detect and report
mismatches in a target application’s accessibility hierarchy. An important requirement of the Accessibility API is that the
hierarchy when looking “up” from a leaf element on the screen should be a mirror image of the hierarchy when looking
“down” from the root application element. Otherwise, a screen reader will be unable to navigate to an element that a
browser can reach, or vice versa. A mismatch should always be considered a bug in the target application. It exists
wherever a given UI element’s AXParent attribute omits the given UI element from its AXChildren attribute, and wherever a
given UI element’s AXChildren attribute contains one or more elements whose AXParent attribute is not the given
element.

PFiddlesoft™

Assistive Application Programming Guide
 16

if (![element isRole:NSAccessibilityApplicationRole]) { // root element has no parent

! PFUIElement *browserParent = [[[self elementArray] objectAtIndex:(column - 1)]

! ! objectAtIndex:[[self elementBrowser] selectedRowInColumn:(column - 1)]];

! if (![element AXParent]) {

! ! [cell setStringValue:[NSLocalizedString(@"[MISMATCH-no parent] ",

! ! ! @"Warning string for no parent mismatch in target application's UI element

! ! ! hierarchy for browser") stringByAppendingString:

! ! ! [self descriptionWithTitleAndIndexOfElement:element atColumn:column]]];

! ! NSLog(@"Mismatch browsing the children tree from the root UI element: the %@ is

! ! ! a child of %@ <%p>, but it has no parent.", [element AXRoleDescription],

! ! ! [browserParent AXRoleDescription],browserParent);

! } else if (![[element AXParent] isEqualToElement:browserParent]) {

! ! [cell setStringValue:[NSLocalizedString (@"[MISMATCH-different parent] ",

! ! ! @"Warning string for different parent mismatch in target application's UI

! ! ! element hierarchy for browser") stringByAppendingString:

! ! ! [self descriptionWithTitleAndIndexOfElement:element atColumn:column]]];

! ! NSLog(@"Mismatch browsing the children tree from the root UI element: the %@ is

! ! ! a child of %@ <%p>, but it has a different parent, %@ <%p>.",

! ! ! [element AXRoleDescription], [browserParent AXRoleDescription],

! ! ! browserParent, [[element AXParent] AXRoleDescription],

! ! ! [element AXParent]);

! } else {

! ! [cell setStringValue:[self descriptionWithTitleAndIndexOfElement:element

! ! ! atColumn:column]];

! }

! [cell setLeaf:[element childrenCount] == 0];

}

The PFUIElement and PFApplicationUIElement classes declare several other methods relating to attributes. Read the
PFAssistive Framework Reference for comprehensive information about them.

Controlling an Application
There are three ways in which an active assistive application can control a target application using the Accessibility API:

1. An assistive application can determine whether a UI element of interest has an Accessibility attribute that can be
set. If it does, the assistive application sets the attribute to a new value, and the effect takes place immediately
in the target application and on the screen. Read the Setting a UI Element’s Attributes subsection for details.

2. An assistive application can determine whether a UI element of interest responds to any of several Accessibility
actions. If it does, the assistive application directs the target application to perform the action, and the effect
takes place immediately in the target application and on the screen. Read the Performing Actions on a UI
Element subsection for details.

3. An assistive application can send a keystroke, optionally combined with modifier keys, to the target application.
If the target application recognizes the key combination as a keyboard shortcut, it performs the shortcut

PFiddlesoft™

Assistive Application Programming Guide
 17

immediately. Otherwise, if the UI element in the target application that currently has keyboard focus can
respond to the keystroke, it responds immediately, for example, by typing a character into the focused text field
or text area. Read the Sending Keystrokes to an Application subsection for details.

Whenever an assistive application controls a target application using any of these techniques, the target application
responds exactly as it would if a user had done the same thing using the graphical user interface. The target application’s
internal data store and its user interface are updated appropriately, its documents are marked dirty as appropriate, and
its undo mechanism takes note so that the user can undo whatever changes were made.

There is a fourth mechanism by which an assistive application can control a target application, namely, by manipulating
or creating user input events using the PFiddlesoft PFEventTaps Framework. The PFEventTaps Framework is discussed
in the next chapter, How to Use the PFEventTaps Framework.

1. Setting a UI Element's Attributes
The values of many of a UI element’s attributes can be set by an assistive application. In the parlance of Objective-C,
their properties in the Attributes category of the PFUIElement class are declared readwrite, not readonly. Setting a
settable attribute is a common means used by active assistive applications to control a target application.

Before attempting to set an attribute, an assistive application should test whether it is marked as settable in the
Accessibility API. To do this, send it an -isSettableAttribute: message, passing in the name of the attribute of
interest. Beware that some attributes are marked as settable but their values cannot in fact be set. Code defensively to
guard against this possibility.

This statement is used in UI Browser as the first step in marking an attribute as settable in the Attributes drawer:

[tempDictionary setObject:[NSNumber numberWithBool:

! [[self currentElement] isSettableAttribute:attribute]] forKey:@"settable"];

To set the value of a settable attribute by name, use a standard setter method. Some attributes are always settable and
need not be tested first, like this:

[myWindowElement setAXMinimized:[NSNumber numberWithBool:YES]];

Just as an assistive application can read an unknown attribute using Key-Value Coding (KVC), it can also set the value of
an unknown attribute using KVC. As when reading unknown attributes, this works only with non-parameterized
attributes. To do this, call PFUIElement’s -setValue:forAttribute: method. The example on the next page is part
of UI Browser’s code to set the target application’s attributes when the user edits the existing values in the Attributes
drawer.

PFiddlesoft™

Assistive Application Programming Guide
 18

- (void)commitEdits {

! PFBrowserController *controller = [self browserController];

! NSTableView *table = [controller attributeTable];

! if ([[self currentElement] isSettableAttribute:[self selectedAttribute]]) {

! ! if ([[[self currentElement] typeForAttribute:[self selectedAttribute]]

! ! ! isEqualToString:@"string"]) {

! ! !

! ! ! // Set attribute table to new string.

! ! ! [[self currentElement] setValue:[[self bottomTextView] string]

! ! ! ! forAttribute:[self selectedAttribute]];

! ! ! [(NSMutableDictionary *)[[controller cachedAttributeArray]

! ! ! ! objectAtIndex:[table selectedRow]] setObject:

! ! ! ! [[self bottomTextView] string] forKey:@"value"];

! ! ! [(NSMutableDictionary *)[[controller cachedAttributeArray]

! ! ! ! objectAtIndex:[table selectedRow]] setObject:

! ! ! ! [controller descriptionOfAttributeValue:[[self bottomTextView] string]

! ! ! ! ofType:@"string" element:[self currentElement]]

! ! ! ! forKey:@"valueDescription"];

! ! ! [table reloadData];

! ! ! // Set string textfield to new string.

! ! ! NSString *selectedAttributeValue =

! ! ! ! [[self currentElement] valueForAttribute:[self selectedAttribute]];

! ! ! [[controller settingStringTextField] setStringValue:selectedAttributeValue];

! ! ! [[controller settingStringTextField] selectText:table];

! ! }

! }

}

The -setValue:forAttribute: method returns YES if the attribute’s value was successfully set, or NO if not or if the
given attribute is a parameterized attribute. However, some applications mark attributes as settable when they are not,
and this method may return YES even though the value was not changed. Code defensively to guard against this
possibility.

There are some cases where you might think that a UI element’s value attribute should be settable, but it isn’t. In those
cases, the UI element can be modified by performing an Accessibility action on it, instead. A common example that often
trips up users of GUI Scripting is a checkbox. Apple advises that a checkbox should be modified only by sending it an
“AXPress” action simulating a click in the graphical user interface, not by setting its AXValue attribute. An assistive
application can nevertheless read its AXValue attribute. In many cases, however, the target application can be
controlled either by setting an attribute or by sending an action. For example, a window can be minimized to the Dock by
setting the window element’s AXMinimized property, as shown previously, or by sending an “AXPress” action to its
minimize button element, as shown in the next subsection.

PFiddlesoft™

Assistive Application Programming Guide
 19

2. Performing Actions on a UI Element
Many UI elements in a target application can be controlled by instructing them to perform one of a handful of
Accessibility actions. The Accessibility API recognizes these seven actions, each of which is a string:

• “AXCancel” - a cancel action, such as pressing the Cancel button.

• “AXConfirm” - a confirm action, such as pressing Return in a text field.

• “AXDecrement” - a decrement action, such as pressing a stepper's down arrow.

• “AXIncrement” - an increment action, such as pressing a stepper's up arrow.

• “AXPress” - a press action, such as clicking a button or a menu.

• “AXRaise” - a raise action, such as bringing a window to the front within the application.

• “AXShowMenu” - a show menu user action, such as opening a pop-up button's menu or a contextual menu in a
text view or text field.

Applications may respond to custom actions, as well, such as the “AXOpen” action in the Finder.

To get a list of the actions that a particular UI element recognizes, send it the -actions message. It returns an array of
NSStrings. To determine whether an element responds to a given action, send it the -existsAction: method,
passing in the name of the action. To cause the target application to perform the action on the element, send the element
the -performAction: method, passing in the name of the action.

This example is the UI Browser action method that is sent to the target application when the user double-clicks any UI
element in UI Browser’s main browser view. The action method brings the target application and the window containing
the UI element to the front and highlights the UI element with a yellow overlay. It starts by activating the target application
using a PFUIElement utility method, -activateApplication. Then, if the UI element that was double-clicked is a
window element, it performs the “AXRaise” action on it to make it the target application’s frontmost window. If it is any
other element, it gets the element’s AXWindow property and then performs the “AXRaise” action on that.

- (IBAction)highlightDoubleClickAction:(id)sender {

! if ([self isTargetAccessible]) {

! ! [[self currentElement] activateApplication];

! ! if ([[self currentElement] isRole:NSAccessibilityWindowRole]) {

! ! ! [[self currentElement] performAction:NSAccessibilityRaiseAction];

! ! } else {

! ! ! [[[self currentElement] AXWindow]

! ! ! ! performAction:NSAccessibilityRaiseAction];

! ! }

! ! [[self highlightButton] setState:NSOnState];

! ! [self highlightAction:sender];

! }

}

PFiddlesoft™

Assistive Application Programming Guide
 20

3. Sending Keystrokes to an Application
The final way to control a target application using the PFAssistive Framework is to send the application a keystroke,
optionally combined with modifier keys. To send a keystroke to a specified application, use PFApplicationUIElement’s
-typeCharacters:keyCode:withModifierFlags: method. It posts keyboard events to the application
represented by the receiving PFApplicationUIElement even if it is not currently the active application. To send a keystroke
to the active application without first determining which application is active, send the
+typeCharactersSystemWide:keyCode:withModifierFlags: class method. It creates a temporary system-
wide element and posts keyboard events to the frontmost application.

Both methods are sent directly to the application, not to individual UI elements. They differ from the other techniques for
controlling a target application in this respect. Usually, the target application types the character into whatever UI element
currently has keyboard focus, just as typing on the keyboard would do. Therefore, an assistive application should set
focus to a specific text field or text area first, using the AXFocused property, by sending a -setAXFocused: message
to the element.

Both methods send a single keystroke with optional modifier keys. Apple’s corresponding GUI Scripting commands for
AppleScript—the ‘keystroke’ command and the ‘keycode’ command—are different in this regard; they send multi-
character strings by calling the Accessibility API function underlying these PFAssistive Framework methods multiple
times. An assistive application can accomplish the same result that GUI Scripting does by similarly sending either of
these methods multiple times in succession. However, it is often easier and more efficient to set the AXValue attribute of
a UI element if it is a text field or a text area. An assistive application can set the value of a text field or a text area by
passing an NSString of arbitrary length in a -setAXValue: or -setValue:forAttribute: method.

If the -typeCharacters:keyCode:withModifierFlags: or +typeCharactersSystemWide:keyCode:
withModifierFlags: method specifies that the Command key is down, and if the target application recognizes the
key combination as a keyboard shortcut, it executes the shortcut. It is important to pass the command character as a
lowercase letter, because an uppercase character is interpreted as a keyboard shortcut with the Shift key down. In some
applications this performs a different keyboard shortcut, but in most applications it either does nothing or it types the
uppercase character into the active UI element.

The characters and flags arguments are equivalent to those used in NSEvent's
-charactersIgnoringModifiers and -modifierFlags methods. The virtualKey argument is the virtual key
code provided by NSEvent's -keyCode method. It is a hardware-independent integer value provided by system
resources for every known keyboard, mapped from the hardware-dependent raw key code using the current keyboard
layout resource.

On Roman systems, the characters argument is optional and should be passed as nil or an empty string unless you
are knowledgeable regarding the difficult and arcane subject of keyboard layouts. It is not optional on some other
systems where it is used as a hint to supplement the virtual key code during key translation.

Miscellaneous
There are a few methods in the PFAssistive Framework that have not been covered in this Programming Guide. They are
covered in detail in the PFAssistive Framework Reference.

PFiddlesoft™

Assistive Application Programming Guide
 21

How to Use the
PFEventTaps Framework

Apple's Quartz Event Taps API implements the three concepts of an event tap to monitor and intercept user input events;
an event source, such as a mouse, keyboard, scroll wheel, tablet, or tablet pointer, or a virtual input device; and a user
input event that is generated by an event source.

The PFEventTaps Framework implements these same concepts in its PFEventTap, PFEventSource, and PFEvent classes,
each of which instantiates and encapsulates an associated Event Taps API object and makes its capabilities available to
an assistive application using standard Objective-C and Cocoa techniques. For example, an assistive application using
the PFEventTaps Framework can implement optional delegate methods declared in the framework’s
PFEventTapsDelegate formal protocol to observe Quartz events as they are generated by user input devices and virtual
devices, and to filter, modify, block, and respond to the events.

In this chapter, you learn how to monitor user input events generated by devices such as a mouse, a keyboard, or a
tablet, and to filter, modify, block, and respond to user input events and to generate additional synthetic events, all in the
interest of supporting assistive devices and applications that enable a user with disabilities to use the computer to
perform the same tasks that any user can perform. An assistive application typically does this by performing these tasks:

• Creating and installing a PFEventTap object that intercepts user input events at one of several points in the
system's low-level event handling machinery. It sends delegate messages or callbacks to an assistive application
to enable it to filter, modify, block, and respond to the events. Read the Monitoring Events Using an Event Tap
section for more information.

• Retrieving a PFEvent object that represents a user input event generated by an event source and reported to an
assistive application by an installed event tap. An assistive application uses the PFEvent object to filter, modify,
block, and respond to the event. It can respond to the event by sending additional synthetic events before or after
the received event and by taking other actions. Read the Filtering, Modifying, Blocking, and Responding to Events
section for more information.

• Creating PFEvent objects that post independent synthetic user input events, for example, from a virtual onscreen
keyboard. Read the Posting Synthetic Events section for more information.

• Retrieving or creating a PFEventSource object that represents a user input device such as a mouse, keyboard,
scroll wheel, tablet, or tablet pointer, or a virtual input device. An event source reports current state information
about the associated device outside of the event stream. Read the Reading the State of an Event Source section
for more information.

IMPORTANT WARNING: When an assistive application initializes a PFEventTap object as an active filter and implements
an -eventTap:willPostModifiedEventForEvent: delegate method or a callback method, no user input event
will be delivered to any running application or to the target application unless the method returns a valid PFEvent object.
Implementing an -eventTap:shouldPostEvent: method and returning NO will also block events. It is therefore

PFiddlesoft™

Assistive Application Programming Guide
 22

prudent during development to initialize an event tap as a passive listener until you are confident that it is returning a valid
PFEvent object or that it is blocking only the intended types of events. If the mouse or keyboard becomes unresponsive
because the delegate or callback method blocks user input events, use the Option-Command-Escape key combination
to force the application to quit or, if keyboard events are blocked, turn off the computer and reboot.

Monitoring Events Using an Event Tap
An assistive application using the PFEventTaps Framework monitors Quartz events using PFEventTap objects. Creating
and installing a PFEventTap installs one or more Quartz event taps that monitor hardware user input events from an input
device such as a keyboard, mouse, scroll wheel, tablet, or tablet pointer, or synthetic user input events generated in
software. A Quartz event tap monitors events at one of several levels in the system, enabling an assistive application to
observe and manipulate events that are targeted at any running application or at a specific application in real time as they
occur.

A PFEventTap may be configured to respond to one or more types of user input events, such as key up and left mouse
down events. When it is triggered, it calls a delegate method or a callback method implemented by the assistive
application, passing the PFEventTap itself and a PFEvent object representing the triggering event. It calls some of the
delegate methods before the system delivers the event to its intended target, and some after. The assistive application
can do anything in response to the event, before or after the target application responds to it. If the PFEventTap is
configured as an active filter rather than a passive listener, the assistive application can deliver a modified version of the
original event to the original target or to another target. It can also post additional synthetic events, and it can block the
original event altogether. If the event tap is configured as a passive listener, the assistive application cannot prevent the
original event from being delivered to the intended target, but it can post additional compatible events before and after
the original event.

The system guarantees that events which are not blocked are delivered sequentially. However, if an assistive application
installs an active PFEventTap and the delegate method or callback method takes too long to execute, the system might
become bogged down. For this reason, the system may automatically disable any event tap if it detects excessive delay.
An assistive application can detect when the system disables an event tap and re-enable it in order to continue
monitoring events.

To monitor Quartz events in your assistive application, create a PFEventTap object using one of the factory convenience
methods declared in PFEventTap.h, or create a PFEventTap object and initialize it with one of the declared initializers. It
begins monitoring events immediately. Alternatively, create an empty event tap by initializing it with -init, then install a
Quartz event tap in it later with one of the provided installation methods.

A PFEventTap has a choice of two techniques to watch for and respond to generated events: a delegate method and a
callback method. The delegate method is easier to use, and it suffices for most purposes. The callback method allows
for more complex behavior when circumstances require it. The choice is made when the PFEventTap is created or a
Quartz event tap is installed in an empty event tap.

To create a PFEventTap that uses a delegate method to monitor a specific application, call one of the factory methods for
delegates, passing in an event types mask specifying the kinds of events to monitor and the path, file URL or bundle
identifier of the target application. Also take one or two additional steps: set the delegate, and in the case of an empty
event tap install a Quartz event tap by calling one of the provided installation methods. The delegate must declare that it
conforms to the PFEventTapsDelegate formal protocol, which is declared in PFEventTaps.h. Set the delegate by sending
a -setDelegate: message. Several factory methods for delegates are provided, such as
+activeTapWithEventTypesMask:forApplicationPath: and passiveTapWithEventTypesMask:

PFiddlesoft™

Assistive Application Programming Guide
 23

forApplicationPath:. An active event tap can read, modify, and block events, while a passive tap can only read
events.

This example is derived from the method used in UI Browser to create the PFEventTap object that monitors movement of
a target application’s window or other UI element so that the highlight overlay can move with it. It uses a utility class
method of the PFEventTap class, +eventTypesMaskByAddingType:toMask: to create the mask argument to the
factory method.

- (void)makeHighlightedElementEventTap {

! // Called by -highlightAction: to create a Core Graphics event tap to monitor left

mouse drags, mousedowns and mouseups. Dragging the mouse or clicking an up or down

button in a scroll bar, if it results in moving or resizing the highlightedElement,

will also move or resize the overlay highlighting window synchronously by invoking the

eventTap:didPostEvent: delegate method. Dragging or clicking anything that does not

move or resize the highlightedElement simply puts the overlay window where it already

is, to no visual effect.

! unsigned mask =

! ! [PFEventTap eventTypesMaskByAddingType:NSLeftMouseDragged toMask:0];

! mask = [PFEventTap eventTypesMaskByAddingType:NSLeftMouseDown toMask:mask];

! mask = [PFEventTap eventTypesMaskByAddingType:NSLeftMouseUp toMask:mask];

! [self setHighlightedElementEventTap:

! ! [PFEventTap passiveTapWithEventTypesMask:mask

 forApplicationPath:[self currentPath]]];

! [[self highlightedElementEventTap] setDelegate:self];

}

Instead of monitoring a specific target application, an assistive application can monitor all running applications by calling
one of the factory methods for delegates that takes a system location instead of an application path, file URL or bundle
identifier, +activeTapWithEventTypesMask:forLocation: and +passiveTapWithEventTypesMask:
forLocation:. The system locations supported by the PFEventTaps Framework are kCGSessionEventTap (1),
where HID system and remote control events enter a login session, and kCGAnnotatedSessionEventTap (2), where
session events have been annotated to flow to an application. The PFEventTaps Framework does not support
kCGHIDEventTap (0), where HID system events enter the window server and the application must run as root.

To create a PFEventTap that uses a callback method instead of a delegate method, call one of the factory methods for
callbacks, passing in an event types mask specifying the kinds of events to monitor and the name (not the path) of the
target application, along with an object to serve as the notification delegate and the selector for the callback method that
the notification delegate implements. The notification delegate and callback selector follow the rules described in
Observing Notifications in the How to Use the PFAssistive Framework chapter. Information can also be passed in the
contextInfo argument that is needed when the callback is called.

In addition to the factory methods, there are initializers for use when factory methods are inappropriate or the application
needs finer control over the event tap. There are initializers that take the target application’s full path, file URL, bundle
identifier, or PID, and two that take a system location. Some of them are for delegate-based event taps, and some are for
callback-based event taps. The designated initializer for a PFEventTap object for a specified application is

PFiddlesoft™

Assistive Application Programming Guide
 24

-initWithEventTypesMask:forApplicationPid:appendAtTail:listenOnly:

notificationDelegate:callbackSelector:contextInfo:. The designated initializer for a PFEventTap object
for a specified system location is -initWithEventTypesMask:forLocation:appendAtTail:listenOnly:
notificationDelegate:callbackSelector:contextInfo:. The initializers allow an application to specify
whether an event tap is appended at the tail or inserted at the head, while the factory methods always use the default,
insert at head. The initializers return nil if initialization fails or if the event tap is not permitted to monitor the events
specified by the event types mask (key up and key down events require that access for assistive events be enabled).

All of the factory methods and initializers configure and install a fully-functional event tap that begins monitoring events
immediately. If an assistive application needs to stop monitoring events for any reason, it has two options. It can disable
the tap temporarily and reenable it using its enabled property by sending a -setEnabled: message and passing YES
or NO. Alternatively, it can uninstall the event tap by calling the -uninstall method. Uninstalling an event tap leaves the
PFEventTap object in existence as an empty object; release it to reclaim its memory. An assistive application can create
an empty PFEventTap object in the first place by creating it and using -init to initialize it. Turn an empty event tap back
into a fully configured tap that monitors events by calling one of the provided installation methods with appropriate
configuration arguments.

The example on the next page is the method used in the Event Taps Testbench utility to install a Quartz event tap in an
empty PFEventTap object. Event Taps Testbench subclasses PFEventTap so that it can associate a name and
description with every event tap. It creates an empty PFNamedEventTap object with [[PFNamedEventTap alloc]
init]. It then obtains configuration values from the user in a window and installs the event tap by calling this method.
The instance variables that hold the configuration values are bound to the window’s controls using Cocoa bindings.

PFiddlesoft™

Assistive Application Programming Guide
 25

- (void)doInstall:sender {

! // Set up initialization arguments.

! NSUInteger mask = [[self eventTap] tapEventMask];

! NSUInteger location = [[self eventTap] tapLocation];

! NSString *path = [[NSWorkspace sharedWorkspace] fullPathForApplication:[[self

eventTap] tapApplicationName]];

! BOOL appendAtTail = ([[self eventTap] tapPlacement] == kCGTailAppendEventTap);1

! BOOL listenOnly = ([[self eventTap] tapOption] == kCGEventTapOptionListenOnly);

! id notificationDelegate =

! ! (([[self eventTap] tapUsesCallback]) ? [self mainWindowController] : nil);

! SEL callbackSelector = (([[self eventTap] tapUsesCallback]) ?

! ! @selector(eventTap:eventTapProxy:eventType:event:contextInfo:) : NULL);

! NSString *info = (([[self eventTap] tapUsesCallback] &&

! ! [[self eventTap] tapUsesContextInfo]) ?

! ! [[self eventTap] tapContextInfo] : @"");

!

! // Remove old event tap, if any.

! if ([self replacing]) {

! ! [[self eventTap] uninstall];

! ! [[self eventTap] setDelegate:nil];

! ! [[[self mainWindowController] installedTapsController]

! ! removeObject:[self eventTap]];! !

! ! [self setEventTap:[self eventTap]];

! }

!

! // Install new event tap.

! PFNamedEventTap *newTap = [self eventTap];

! if (location == 3) { // application

! ! [newTap setIsInstalled:[newTap installWithEventTypesMask:mask

! ! ! forApplicationPath:path appendAtTail:appendAtTail listenOnly:listenOnly

! ! ! notificationDelegate:notificationDelegate

! ! ! callbackSelector:callbackSelector contextInfo:info]];

! } else {

! ! [newTap setIsInstalled:[newTap installWithEventTypesMask:mask

! ! ! forLocation:location appendAtTail:appendAtTail listenOnly:listenOnly

! ! ! notificationDelegate:notificationDelegate

! ! ! callbackSelector:callbackSelector contextInfo:info]];

! }

!

! if ([newTap isInstalled]) {

! ! // Set the new event tap's delegate.

! ! [newTap setDelegate:([newTap tapUsesDelegate]) ?

! ! ! [self mainWindowController] : nil];

! ! //

PFiddlesoft™

Assistive Application Programming Guide
 26

Read the Filtering, Modifying, Blocking, and Responding to Events section for information about what an assistive
application can do in its implementation of a delegate or callback method.

Filtering, Modifying, Blocking, and Responding to Events
To respond to an event that was intercepted by an event tap, an assistive application usually uses a delegate and
implements one or more of the optional delegate methods declared in the PFEventTapsDelegate formal protocol declared
in PFEventTap.h. Alternatively, an assistive application can implement an Objective-C callback method.

One of the delegate methods, -eventTap:wasDisabledBy:, monitors whether the system or the user has disabled
the event tap. This delegate method returns the event tap that was disabled, and it reports in the source argument
whether it was disabled by the system, kCGEventTapDisabledByTimeout (0xFFFFFFFE) or by the user,
kCGEventTapDisabledByUserInput (0xFFFFFFFF). An appropriate response when the system disables it is usually
to re-enable it immediately by sending a -setEnabled: message, passing YES. An assistive application that wants to
ensure that it does not fall out of touch with events should always implement this delegate method. These are referred to
as out-of-band events; they are never posted to the target application.

This example from Event Taps Testbench simply reports to the user when the system disables an event tap:

- (void)eventTap:(PFEventTap *)tap wasDisabledBy:(NSUInteger)source {

! if (source == kCGEventTapDisabledByTimeout) { // automatically disabled by timeout

! ! [self alertForTimeoutDisabledEventTap:(PFNamedEventTap *)tap];

! }

}

Three of the other delegate methods follow the standard Cocoa pattern: -eventTap:willPostEvent: is called when
an event tap detects a user input event but before the event is posted to the target application; -eventTap:
shouldPostEvent: is called when an event tap detects a user input event but before the event is posted to the target
application; and -eventTap:didPostEvent: is called when an event tap detects a user input event and after the
event is posted to the target application.

Two delegate methods can be used to post a modified event or to block an event if the event tap is configured as an
active tap. If the -eventTap:shouldPostEvent: delegate method returns NO, it blocks the event so that it is never
posted to the target application. A special delegate method, -eventTap:willPostModifiedEventForEvent:, is
called when an event tap detects a user input event but before the event is posted to the target application. The
unmodified event is passed in the event argument, and the method posts and returns a modified version of the event. If
the modified event is nil, the effect is the same as returning NO from the -eventTap:shouldPostEvent: method.

If more than one of the delegate methods is implemented, PFEventTaps follows a simple precedence rule. Delegate
methods, if implemented, have the precedence from highest to lowest given here: -eventTap:shouldPostEvent:,
-eventTap:willPostEvent:, -eventTap:willPostModifiedEventForEvent:, and -eventTap:
didPostEvent:. Implementing one of them suppresses all with lower precedence, except that the -eventTap:
didPostEvent: method is always called if an event was posted.

This example is a portion of Event Taps Testbench’s implementation of the PFEventTap’s -eventTap:
willPostModifiedEventForEvent: delegate method:

PFiddlesoft™

Assistive Application Programming Guide
 27

- (PFEvent *)eventTap:(PFEventTap *)tap

! willPostModifiedEventForEvent:(PFEvent *)event {

! //

! if (doBlockEvent) return nil;

! if (doModifyEvent) {

! ! PFEvent *modifiedEvent =

! ! ! [(PFNamedEventTap *)tap modifiedEventForEvent:event withProxy:NULL];

! ! [client updateMonitorEventsWindowWithEvent:modifiedEvent andContextInfo:nil];

! ! [client updateEventsWindowWithTriggerMethod:@"WILL POST MODIFIED EVENT FOR

! ! ! EVENT delegate method" event:modifiedEvent andContextInfo:nil];

! ! return modifiedEvent;

! }

! //

}

As an alternative to these delegate methods, an assistive application can implement an Objective-C callback method
using one of the factory methods, initializers or installation methods that include parameters for a callback (notification
delegate, callback selector, and context info). Use a callback method for more complex scenarios, for example, where
the assistive application must use the information saved in the contextInfo argument when the event tap was
installed. The delegate methods do not have enough information to do this. The assistive application's Objective-C
callback selector must have the following signature:

- (PFEvent *)eventTap:(PFEventTap *)tap eventTapProxy:(CGEventTapProxy)proxy

! eventType:(unsigned)type event:(PFEvent *)event contextInfo:(void *)info

One situation in which an assistive application must use a callback method instead of a delegate method is where it
posts additional events that are compatible with the original event using -postEvent:withProxy:. The proxy
argument to be used in this method is an opaque object passed to the callback method to identify the event tap that
generated the event, encoded as an NSData object. It provides information to ensure that the posted event is compatible
with the event to be returned by the callback method.

This method from Event Taps Testbench is called from a callback method, where it obtained the proxy argument, every
time the user types a letter on the keyboard. It calls -postEvent:withProxy: to type the same letter again, doubling
every character typed into any application that is running. Note the steps taken to avoid unwanted side effects, such as
disabling the event tap temporarily so that sending the event again does not invoke the callback again in an infinite
regression.

PFiddlesoft™

Assistive Application Programming Guide
 28

- (PFEvent *)modifiedEventKeyboardDoubleCharactersForEvent:(PFEvent *)event

! proxy:(CGEventTapProxy)proxy {

! if (![event isCommandKeyDown]) { // don't double keyboard shortcuts

! ! [self setEnabled:NO]; // avoid infinite regression

! ! [PFNamedEventTap postEvent:event withProxy:proxy]; // post the same event again

! ! [self setEnabled:YES];

! }

! return event;

}

For good measure, a PFEventTap object posts two notifications that an assistive application can register to observe. The
PFEventTapWillFireNotification is posted before any delegate or callback method is called, and the
PFEventTapDidFireNotification is posted after they are called (even after the -eventTap:didPostEvent:
delegate method, if it is implemented). In both cases, the notification object is the PFEventTap object and the
userInfo dictionary contains a reference to a PFEvent object keyed to "PFEvent". In the first notification, the event is
the original event. In the second notification, it is the event that was actually posted. The event that was actually posted
may be the original event, if the original event was posted; a modified event, if a modified event was posted; an event tap
disabled event, in which case no event was posted; or if -eventTap:shouldPostEvent: returned NO or -
eventTap:willPostModifiedEventForEvent: or the callback method returned nil, in which case no event was
posted. These notifications may be useful if the application needs to do any preparatory or cleanup work before or after
the delegate methods are called.

The principal delegate methods and the callback method include an event argument that is a PFEvent object. In
addition, the PFEvent class implements several factory methods and initializers that an assistive application can use to
create new PFEvent objects of any kind, as described in the Posting Synthetic Events section. The PFEvent class
declares a large number of properties that allow an assistive application to read or modify the features of any detected
input event, and to set the features of a new synthetic event before posting it.

For example, events of any kind can get a timestamp reporting the time when the event was generated in
nanoseconds since system startup. Keyboard, mouse, and tablet pointer events can get the position of the mouse or
pointer on the screen as well as the modifierKeyFlags to determine the user’s intent while clicking or typing. Mouse
events can get the mouseClickState to distinguish single-click and double-click events, the mouseButtonNumber
to learn whether it was a left mouse or right mouse event or a fire button event on a joystick, mouseDeltaX and
mouseDeltaY to know how far the mouse has moved since the last mouse event, and many others. A keyboard event
reports wether it isKeyAutorepeat and others. Scroll wheel events are covered, as are tablet proximity and tablet
pointer events both for mouse events with a tablet subtype and for pure tablet events. Consult the PFEventTaps
Framework Reference for complete information.4 All of these PFEvent properties are available to an assistive application
to help it respond to user input events in any application.

Posting Synthetic Events
In addition to reacting to user input events, an assistive application can generate synthetic user input events and post
them independently. In reality, all synthetic events are posted in response to a user input event, because it takes some
signal from the user to tell the assistive application to post another event. The important distinction is between events

PFiddlesoft™

Assistive Application Programming Guide
 29

4 This version of the PFEventTaps Framework does not cover multi-touch or gesture events.

that modify or supplement a user input event, which are typically posted using the -postEvent:withProxy: method
discussed above, and events that in some way emulate a hardware input device in software. For example, a virtual
keyboard on the screen might respond to a user’s mouse clicks by generating key down and key up synthetic keyboard
events, and the iSight camera on the monitor might interpret the user’s gestures in space and generate synthetic mouse
moved events.

To post a synthetic event from your assistive application, first create a PFEvent object using one of the factory
convenience methods declared in PFEvent.h, or create a PFEvent object and initialize it with one of the declared
initializers. To create any kind of event, create it and initialize it with the -initWithEventSource: initializer or create
and return it with the +eventWithEventSource: factory method. To create a keyboard, mouse, or scroll wheel event,
use one of the specific factory methods or their corresponding initializers designed for this purpose, passing in state
information such as the keyCode and keyDown arguments to the +keyboardEventWithEventSource:
keyCode:keyDown: factory method, the type, position, and button arguments to the
+mouseEventWithEventSource:type:position: button: factory method, and the scrollUnits, count,
and wheelRanges arguments to the +scrollWheelEventWithEventSource:scrollUnits:wheelCount:
wheelRanges: factory method.

All of these methods require that a PFEventSource object be passed in as the source argument. If an assistive
application does not use an event source that is already available, it must create the event source itself. An existing
PFEventSource object can be obtained from the PFEvent object passed into an event tap’s delegate method or callback
method by getting the PFEvent’s eventSource property. To create a new event source, an assistive application must
use one of the PFEventSource factory convenience methods or initializers declared in PFEventSource.h. See the Reading
the State of an Event Source section for more information.

There are several other factory methods and initializers that do not require an event source to create an event. The
+eventWithEventRef: and +eventWithCopyOfEventRef: factory methods and their corresponding initializers
take a Core Graphics CGEventRef object as their event arguments. The +eventWithEventData: factory method and
its corresponding initializer take an NSData object that is a flattened data representation of an event received over a
network or created from a PFEvent object for transmission over a network using PFEvent’s -eventData method.

The designated initializer for PFEvent is -initWithEventRef:.

Once an assistive application has created a PFEvent object and configured it using PFEvent’s properties, it can post the
event to an application or to a system location using PFEvent’s -postToApplication: or -postAtTapLocation:
method. The event is posted immediately, and it passes through all event taps installed for the application or at the
location. To post an event at a location, specify kCGSessionEventTap (1), where HID system and remote control
events enter a login session, or kCGAnnotatedSessionEventTap (2), where session events have been annotated to
flow to an application. An assistive application can use -postAtTapLocation: to establish an event routing policy, for
example, by tapping and blocking events at the kCGAnnotatedSessionEventTap location and posting them to
another application. This might be useful in an assistive application that provides an alternate user interface to help users
with disabilities control an existing application.

Although PFEvent’s position property is writable, special techniques provided by Quartz Display Services are required
to move the cursor on the screen so that its visible position corresponds to its modified position property. For mouse
and tablet pointer events, an assistive application must first dissociate the cursor from system control by calling
CGAssociateMouseAndMouseCursorPosition(false). To reposition the cursor, it must then call
CGDisplayMoveCursorToPoint() or CGWarpMouseCursorPosition() to move the cursor. Finally, to restore

PFiddlesoft™

Assistive Application Programming Guide
 30

normal cursor functioning, an assistive application must call
CGAssociateMouseAndMouseCursorPosition(true). See Apple’s Quartz Display Services Programming Topics
for more information. PFEvent covers these functions with its +dissociateCursor, +warpCursorToPoint: , and
+associateCursor class methods. Use the mouseDeltaX and mouseDeltaY properties to learn how far the
cursor's position has moved since the last mouse down or mouse dragged event was posted; those properties continue
to register changes even while the cursor is dissociated.

Keep these relations and requirements in mind when moving the cursor:

• NSEvent's +mouseLocation class method reports the location where the cursor is now, outside the event
stream, before a mouse dragged or mouse moved event is posted and before the cursor has moved.

• PFEvent's position property reports where the cursor will be after the event is posted.

• PFEvent's mouseDeltaX and mouseDeltaY properties report how far the cursor will have moved after the
event is posted.

If CGAssociateMouseAndMouseCursorPosition(false) has been called, PFEvent's position property
remains frozen but its mouseDeltaX and mouseDeltaY properties continue to function as usual. The cursor can be
repositioned where desired by calling the CGWarpMouseCursorPosition() function, which posts no events. If the
cursor is repositioned, it is necessary to reset PFEvent's position property to the new cursor position so that user
clicks will take effect at the location indicated by the cursor.

This example method is used in Event Taps Testbench as part of the code that freezes the mouse pointer on the screen:

- (PFEvent *)modifiedEventMouseFreezeForEvent:(PFEvent *)event {

! if ([event isControlKeyDown]) {

! ! [self setFrozenCursorPosition:NSZeroPoint]; // signal need to refresh position

! } else {

! ! if (NSEqualPoints([self frozenCursorPosition], NSZeroPoint)) {

! ! ! [self setFrozenCursorPosition:[event position]];

! ! }

! ! // Force cursor to move to the frozen position, effectively freezing cursor.

! ! if ([PFEvent warpCursorToPoint:[self frozenCursorPosition]])

! ! ! [event setPosition:[self frozenCursorPosition]];

! }

! return event;

}

Reading the State of an Event Source
A PFEventSource object is not only used to create a PFEvent object, but it is independently useful to read the current
state of any standard user input device outside of the event stream, such as whether one of the Option keys on the
keyboard is down, whether the right mouse button is down, or the resolution of a scroll wheel in pixels per inch.

Several factory methods and initializers are declared in PFEventSource.h for use in creating PFEventSource objects. The
most useful for reading the state of an input device are +eventSourceForUserLoginSession, when creating an

PFiddlesoft™

Assistive Application Programming Guide
 31

event source if the assistive application is posting events from within a user login session, and
+eventSourceForPrivateSource, when creating an event source if the assistive application is posting events from
a session where events have been annotated to flow to an application. The designated initializer is
-initWithEventSourceRef:.

An assistive application can determine the state of an input device for its PFEventSource object at any time by used one
of several properties. These include isLeftMouseButtonDown, modifierKeyFlags, isNumericPadKeyDown,
isCapsLockKeyDown, isCommandKeyDown, isSecondaryFunctionKeyDown, and a number of similar
properties.

Properties and methods are also provided to determine the time interval since the last user input of any type or all types
and the count of events since the window server started.

Miscellaneous
There are a few methods in the PFEventTaps Framework that have not been covered in this Programming Guide. They
are covered in detail in the PFEventTaps Framework Reference.

PFiddlesoft™

Assistive Application Programming Guide
 32

How to Enable Access
for Assistive Devices

Before an assistive application can make use of a PFUIElement, PFApplicationUIElement, or PFObserver object, the
"Enable access for assistive devices" setting in the Universal Access pane of System Preferences must be turned on, or
the application must be made a trusted process through use of the accessibility API's AXMakeProcessTrusted()
function. Similarly, an assistive application can monitor key up and key down events using a PFEventTaps object only if
access is enabled or the application is trusted. Authentication may be required.

IMPORTANT WARNING: The “Enable access for assistive devices” setting is turned off by default due to security
concerns. As this Programming Guide demonstrates, the Accessibility and Quartz Event Taps APIs are very powerful,
allowing an assistive application to control any other application in virtually every respect. The setting applies globally to
all applications on the computer. Although the setting can be left on all the time, you should do so only if you are
comfortable with the security of your environment.

The most straightforward way to enable access is to open the Universal Access pane of System Preferences and enable
it manually. The “Enable access for assistive devices” checkbox appears at the bottom of the pane no matter which tab
is selected. In Mac OS X 10.5 Leopard, you can also select the Enable GUI Scripting checkbox in AppleScript Utility. It
controls the same system setting. Authentication is required in either case unless you are an administrative user.
(AppleScript Utility is a scriptable faceless background application in Mac OS X 10.6 Snow Leopard.)

Access can also be enabled or disabled using an AppleScript script addressed to System Events, a scriptable faceless
background application in /System/Library/CoreServices. This AppleScript handler automatically presents a dialog where
the user can authenticate, and then it enables or disables access depending on the value of the switch argument:

on enabledGUIScripting(switch)

! tell application “System Events”

! ! activate

! ! set UI elements enabled to switch

! ! return UI elements enabled

! end tell

end enabledGUIScripting

An assistive application can enable or disable access by sending similar AppleScript commands to the System Events
application. It can execute the script itself using methods in Cocoa’s NSAppleScript class or OSAKit’s OSAScript class,
or it can use the Scripting Bridge. The details are beyond the scope of this Programming Guide.

Finally, an assistive application can arrange to make itself a trusted process by using the Accessibility API’s
AXMakeProcessTrusted() function. This is by far the best solution from the end user’s point of view, because the
global “Enable access for assistive devices” setting can be turned off and left off, enhancing overall security. As a trusted

PFiddlesoft™

Assistive Application Programming Guide
 33

process, an assistive application can make full use of the Accessibility and Quartz Event Taps APIs, and it remains
trusted forever as long as it remains installed.

Making an assistive application trusted takes considerable effort on the part of the developer. As a result, very few
applications have taken this route. PFiddlesoft’s UI Browser, UI Actions, and Event Taps Testbench applications are three
that do use this technique. In outline, these are the requirements:

• Include a very small SUID helper application in the Contents folder of the assistive application’s bundle that runs
as root and executes the AXMakeProcessTrusted() function on the assistive application’s main application
process.

• Include another very small helper application in the Contents folder that terminates the assistive application and
relaunches it, so that it will begin running as a trusted process.

• Add an appropriate user interface to the assistive application whereby the user can authenticate and run the
helper applications.

• The assistive application must contain no embedded frameworks, because Apple considers embedded
frameworks in a trusted process to be a security concern. This is why we recommend that the PFAssistive and
PFEventTaps Frameworks be installed in the standard location for shared frameworks, /Library/Frameworks. This
has the advantage of allowing multiple assistive applications to use the same shared framework, reducing overall
memory requirements. It has the disadvantage of requiring you to write an installer package. Additional technical
requirements are explained in the next chapter, How to Build an Application Using the Frameworks.

• The assistive application should be installed using an installer package to ensure that the frameworks are installed
in the correct location.

The PFUIElement class includes three class methods for use by an assistive application to test the current state of
access or trust, +isAccessImplemented, +isAccessEnabled, and +isProcessTrusted.

PFiddlesoft™

Assistive Application Programming Guide
 34

How to Build an Application Using
the Frameworks

The PFiddlesoft Frameworks give developers of assistive applications the option to embed the frameworks in the
application package or install them separately as shared frameworks in the standard location for shared frameworks,
/Library/Frameworks. A shared framework has the advantage of reducing application size, improving application launch
time, and avoiding duplication of the framework in every application that uses it. However, a client application that relies
on a shared framework must be distributed in an installer package instead of relying on traditional Macintosh drag
installs, and it requires careful management of the installation process to make sure older applications can still find the
older versions of the framework on which they rely. For these reasons, most Macintosh applications that use third-party
frameworks embed them in the application—it's easier on the developer, and it is commonly thought to be easier on the
user. At PFiddlesoft, we prefer to install the frameworks as shared frameworks because several of our products use
them.

In addition, there is one optional but significant feature of the Accessibility API that you cannot implement in your assistive
application unless you install the PFiddlesoft Frameworks as shared frameworks: You cannot run an assistive application
as a "trusted" accessibility process if it uses embedded frameworks. Most of PFiddlesoft’s applications can be run as
trusted accessibility processes.

Without the trusted process feature, an assistive application that uses the Accessibility API requires the user to turn on
the global "Enable access for assistive devices" setting in the Universal Access pane of System Preferences. This global
setting is disabled by default because Apple views it as a security risk. To avoid forcing users of assistive applications to
turn it on and leave it on, the Accessibility API's AXMakeProcessTrusted() function enables any assistive application
to run as a trusted process. The user has to authenticate only once with an administrative password, and thereafter the
trusted process can use the Accessibility API without enabling access globally. The application remains trusted even after
the user quits and relaunches the application or shuts down the computer and restarts. This is a desirable feature, and
you should seriously consider implementing it in your assistive applications.

A trusted process presents security risks of its own, and as a result the PFiddlesoft frameworks require you to use
special build settings and a script build phase to build an application that can run as a trusted process. One security
concern would arise if a trusted application were allowed to use an embedded framework. Embedded frameworks are
generally configured with an install name setting beginning with the @executable_path, @loader_path or, in Mac
OS X 10.5 Leopard and newer, @rpath macro. This setting is copied into the application package's executable, where
the application uses it to find the embedded framework even after the application is moved to a new location. A hacker
might take advantage of this setting to run malicious code, and in a trusted process it would have unfettered access to
the unusually powerful features of the Accessibility API. To protect against this risk, Apple prevents a trusted process
from accessing the objects and methods of any framework if the process has an internal install name reference to the
framework that begins with @executable_path, @loader_path, or @rpath—even if the framework is not in fact
embedded but is instead in the standard location for shared frameworks or some other location external to the
application. Apple has not documented this restriction, but we discovered it while updating the PFiddlesoft frameworks

PFiddlesoft™

Assistive Application Programming Guide
 35

and confirmed it with Apple. For a lucid refresher on the @executable_path, @loader_path, and @rpath settings,
read Mike Ash's "Friday Q&A 2009-11-06: Linking and Install Names" blog post at http://www.mikeash.com/pyblog/
friday-qa-2009-11-06-linking-and-install-names.html.

Thus, any framework designed to be used with an assistive application that takes advantage of the trusted process
feature of the Accessibility API must be capable of installation as a shared framework. In addition, any application that
can run as a trusted process must remove the @executable_path, @loader_path or @rpath macro from its
internal copy of the framework’s install name. At the same time, a framework ought to be designed so that a developer of
an assistive application that does not take advantage of the trusted process feature can embed the framework in the
application.

The distribution builds of the PFiddlesoft Frameworks meet all of these requirements. First, their installation directory
(INSTALL_PATH) build setting is left blank, so that they can be installed anywhere. Second, their Dynamic Library Install
Name (LD_DYLIB_INSTALL_NAME) build setting is set to @rpath/PFAssistive.framework/Versions/I/
PFAssistive. and @rpath/PFEventTaps.framework/Versions/F/PFEventTaps, respectively This relative
path setting will be copied into your application binary when you build your application. You may therefore have to
arrange to change your application’s internal copy of it as described below, depending on whether your application
embeds the framework in the application binary or leaves it installed in the standard location for shared frameworks and,
if the latter, whether your application is capable of running as a trusted accessibility process. Third, their Other Linker
Flags (OTHER_LDFLAGS) build setting is set to headerpad_max_install_names, so that you can change your
application binary’s internal copy of the framework’s install name. This setting guarantees that the framework's binary has
sufficient space to fill in the installation directory setting with a new path at build time.

Wherever you install the PFiddlesoft Frameworks and whether or not your application runs as a trusted process, to use
the frameworks’ methods in your application you simply import the frameworks into an application class’s interface or
implementation file as you would any framework. It is not necessary to link to Carbon.framework,
ApplicationsServices.framework, HIServices.framework, or CoreGraphics.framework.

Building an Application When the Frameworks are Installed as Shared Frameworks
The preferred way to use the frameworks with your application is to create an installer package that installs them in the
standard location for shared frameworks, /Library/Frameworks. Several build settings are involved in doing this:

• When you build the application, either link to the frameworks directly or weak link to them. To weak link to them, use
the -weak_framework flag in the Other Linker Flags (OTHER_LDFLAGS) build setting in the application project’s
target; for example, -weak_framework PFAssistive. Weak linking to the framework is preferred, because it
enables your application to launch even if the framework is not installed so you can include code to post an alert to the
user.

• Set the Runpath Search Paths (LD_RUNPATH_SEARCH_PATHS) build setting to /Library/Frameworks/
PFAssistive.framework/Versions/I/PFAssistive.

• It is not necessary to set special search paths in the application project’s build settings, because Xcode will
automatically find them at build time in the standard location. Be sure you installed them there before you build your
application.

You should distribute your application and the frameworks together in an installer package to ensure that all the pieces
are installed in the proper locations and with the proper permissions. For a step-by-step guide to using Apple’s
PackageMaker utility to built an installer package, read PackageMaker 3: Building a Leopard or Snow Leopard

PFiddlesoft™

Assistive Application Programming Guide
 36

http://www.mikeash.com/pyblog/friday-qa-2009-11-06-linking-and-install-names.html
http://www.mikeash.com/pyblog/friday-qa-2009-11-06-linking-and-install-names.html
http://www.mikeash.com/pyblog/friday-qa-2009-11-06-linking-and-install-names.html
http://www.mikeash.com/pyblog/friday-qa-2009-11-06-linking-and-install-names.html
http://www.quecheesoftware.com/Quechee_Software/PackageMaker.html
http://www.quecheesoftware.com/Quechee_Software/PackageMaker.html

Flat Installer Package Step by Step. Important: Your installer package must install the framework binaries, or either of
them, exactly as they are supplied by PFiddlesoft on the distribution media, without alteration. The framework binaries
include object code for earlier versions of the frameworks, which older applications on the user’s computer may require in
order to run.

Building an Application to Run As a Trusted Accessibility Process
If you want your application to be capable of running as a trusted process using the AXMakeProcessTrusted()
function, you must remove the @rpath macro from the application binary's internal copy of the framework's install
name, and set the internal install name to an absolute path to the standard location for shared frameworks. This is
necessary so that Apple's security restrictions will not encounter the @executable_name, @loader_path or @rpath
macro in the application’s internal copy of the framework’s install name. Do this by adding this script build phase to your
application's target using the install_name_tool command line tool:

install_name_tool -change @rpath/PFAssistive.framework/Versions/I/PFAssistive

/Library/Frameworks/PFAssistive.framework/Versions/I/PFAssistive

${TARGET_BUILD_DIR}/UI\ Actions\ Setup.app/Contents/MacOS/UI\ Actions\ Setup

One way to test whether this worked correctly is to run the otool command in Terminal with the -L option on the built
application package's executable. The first item you should find in the resulting list is /Library/Frameworks/
PFAssistive.framework/Versions/I/PFAssistive.

 For additional requirements to make your application a trusted process, see the previous chapter, How to Enable Access
for Assistive Devices.

Building an Application With the Frameworks Embedded in the Application Package
If you prefer to embed the frameworks in your application package and give up the trusted process feature, add them to
your application project, link or weak link to them, add a copy files build phase to move them into the Contents/
Frameworks folder in the finished application package, and include the following script build phase using the
install_name_tool command line tool to add an installation directory setting that begins with @executable_path
to the embedded framework:

install_name_tool -change @rpath/PFAssistive.framework/Versions/I/PFAssistive

@executable_path/../Frameworks/PFAssistive.framework/Versions/I/PFAssistive

${TARGET_BUILD_DIR}/UI\ Actions\ Setup.app/Contents/MacOS/UI\ Actions\ Setup

If you embed either of the frameworks in your application package, you may remove older versions from the framework
bundles. For example, the PFAssistive Framework 3.1.3 disk image includes, in the PFAssistive.framework folder, a
Versions subfolder that contains the E, F, G, H and I versions of the framework; you can remove the E, F, G and H
versions by dragging them to the trash before embedding the framework in your application.

PFiddlesoft™

Assistive Application Programming Guide
 37

http://www.quecheesoftware.com/Quechee_Software/PackageMaker.html
http://www.quecheesoftware.com/Quechee_Software/PackageMaker.html

